Ролля теорема - definition. What is Ролля теорема
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Ролля теорема
  • Следствие теоремы Ролля: между каждыми двумя последовательными корнями многочлена лежит корень его производной

Ролля теорема         

теорема математического анализа, впервые высказанная М. Роллем (См. Ролль) (1690): если функция f (х) непрерывна на отрезке а х b, имеет внутри его определённую производную, а на концах принимает равные значения f (a) = f (b), то её производная f'(x) по меньшей мере один раз обратится в нуль в интервале (a, b),

т. е. существует такое с (где a < с < b), что f'(с) = 0. Как следствие получается, что между двумя последовательными корнями функции имеется хотя бы один корень её производной. Геометрически Р. т. очевидна (см. рис.). См. также Дифференциальное исчисление.

Рис. к ст. Ролля теорема.

Пи-теорема         
Пи-теорема (\Pi-теорема, \pi-теорема) — основополагающая теорема анализа размерностей. Теорема утверждает, что если имеется зависимость между n физическими величинами, не меняющая своего вида при изменении масштабов единиц в некотором классе систем единиц, то она эквивалентна зависимости между, вообще говоря, меньшим числом p=n-k безразмерных величин, где k — наибольшее число величин с независимыми размерностями среди исходных n величин.
Теорема CAP         
Теорема (известная также как теорема Брюера) — эвристическое утверждение о том, что в любой реализации распределённых вычислений возможно обеспечить не более двух из трёх следующих свойств:

ويكيبيديا

Теорема Ролля

Теорема Ро́лля (теорема о нуле производной) — теорема математического анализа, входящая, вместе с теоремами Лагранжа и Коши, в число так называемых «теорем о среднем значении». Теорема утверждает, что